- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bauer, Martin (2)
-
Preston, Stephen_C (2)
-
Heslin, Patrick (1)
-
Misiołek, Gerard (1)
-
Møller-Andersen, Jakob (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this article we propose a novel geometric model to study the motion of a physical flag. In our approach, a flag is viewed as an isometric immersion from the square with values in$$\mathbb {R}^3$$ satisfying certain boundary conditions at the flag pole. Under additional regularity constraints we show that the space of all such flags carries the structure of an infinite dimensional manifold and can be viewed as a submanifold of the space of all immersions. In the second part of the article we equip the space of isometric immersions with its natural kinetic energy and derive the corresponding equations of motion. This approach can be viewed in a spirit similar to Arnold’s geometric picture for the motion of an incompressible fluid.more » « less
-
Bauer, Martin; Heslin, Patrick; Misiołek, Gerard; Preston, Stephen_C (, Mathematische Annalen)Abstract We investigate the geometry of a family of equations in two dimensions which interpolate between the Euler equations of ideal hydrodynamics and the inviscid surface quasi-geostrophic equation. This family can be realised as geodesic equations on groups of diffeomorphisms. We show precisely when the corresponding Riemannian exponential map is non-linear Fredholm of index 0. We further illustrate this by examining the distribution of conjugate points in these settings via a Morse theoretic approachmore » « less
An official website of the United States government
